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Flow through percolation clusters: NMR velocity mapping and numerical simulation study
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Sektion Kernresonanzspektroskopie, Universita¨t Ulm, 89069 Ulm, Germany

~Received 18 July 2000; published 29 March 2001!

Three- and~quasi-!two-dimensional percolation objects have been fabricated based on Monte Carlo gener-
ated templates. The object size was up to 12 cm~300 lattice sites! in each dimension. Random site, semicon-
tinuous swiss-cheese, and semicontinuous inverse swiss-cheese percolation models above the percolation
threshold were considered. The water-filled pore space was investigated by nuclear magnetic resonance~NMR!
imaging and, after exerting a pressure gradient, by NMR velocity mapping. The spatial resolutions of the
fabrication process and the NMR experiments were 400mm and better than 300mm, respectively. The
experimental velocity resolution was 60mm/s. The fractal dimension, the correlation length, and the perco-
lation probability can be evaluated both from the computer generated templates and the corresponding NMR
spin density maps. Based on velocity maps, the percolation backbones were determined. The fractal dimension
of the backbones turned out to be smaller than that of the complete cluster. As a further relation of interest, the
volume-averaged velocity was calculated as a function of the probe volume radius. In a certain scaling
window, the resulting dependence can be represented by a power law, the exponent of which was not yet
considered in the theoretical literature. The experimental results favorably compare to computer simulations
based on the finite-element method~FEM! or the finite-volume method~FVM!. This demonstrates that NMR
microimaging as well as FEM/FVM simulations reliably reflect transport features in percolation clusters.

DOI: 10.1103/PhysRevE.63.041514 PACS number~s!: 61.43.Hv, 47.55.Mh, 47.53.1n
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I. INTRODUCTION

The objective of this study is to explore laws governi
flow in two- and three-dimensional objects modeling poro
media. The description by characteristic parameters is of
ticular interest as demonstrated by the numerous pape
literature dealing with such problems~see, for instance, Refs
@1–5#!. The present investigations refer to Monte Carlo ge
erated percolation clusters as well as to real model obj
that have been fabricated on the basis of the Monte C
generated templates. Numerical simulations based on
finite-element method~FEM! or the finite-volume method
~FVM! on the one hand are compared with experimental
sults of nuclear magnetic resonance~NMR! microscopy
techniques on the other.

Three different, well-defined percolation models@4,6,7#
have been considered.~a! Random site percolation: Sites on
a square or cubic lattice are occupied with a probabilityp in
the vicinity of the percolation threshold that is characteriz
by the critical occupation probabilitypc . Neighboring occu-
pied sites are connected by pores with a cross section c
sponding to the lattice constanta or integer multiples of it.
The total subsets of connected lattice sites are called clus
For p.pc , sample-spanning clusters occur that can be
amined with respect to transport properties. Adleret al. sug-
gested the use of this model to describe Fontainebleau s
stone @9#. ~b! ‘‘Swiss cheese’’ percolation@8#: Circular or
spherical obstacles of a certain radius are randomly dis
uted in a semicontinuous transport medium irrespective
any overlap. The pore space is then formed by the interst
space.~c! ‘‘Inverse swiss-cheese’’ percolation: Circular or
spherical voids are placed at random in a semicontinu
matrix irrespective of any overlap. The pore space consist
the entity of the~partially overlapping! voids.

In the latter two cases, ‘‘semicontinuous’’ means that
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obstacle or void positions coincide with grid points of a ce
tain discrete square or cubic base lattice~e.g., of size 64
364364 in one of the systems to be considered here!. In the
present case, the respective radius of the obstacles and
was chosen to be 2a, wherea is the base lattice constan
@12#. That is, the obstacles or voids are allowed to ‘‘contin
ously’’ overlap each other. Note however, that the act
‘‘circular’’ or ‘‘spherical’’ shape of the obstacles and void
can only be approximated by a point-symmetric distributi
of discrete pixels or voxels, of course.

In order to put the results concerning flow through t
percolation cluster on a reliable and mutually consistent
sis, we have studied clusters characterized by the same
rameters both in real NMR microscopy experiments and
FEM/FVM simulations. That is, clusters~in the three-
dimensional case chosen without any unsuspended
lands’’ that cannot be realized in the model objects to
fabricated! were first defined using a random number gene
tor. These data sets were then used as matrix patterns fo
FEM/FVM simulations and as templates for the fabricati
of real model objects. The real model objects were then fil
with water pressed through the percolation cluster. Clea
only the ‘‘infinite’’ cluster can be reached in this way
whereas any isolated ‘‘finite’’ clusters remain inaccessible
NMR experiments. Spin density and velocity maps of t
water in the pores were recorded with the aid of four-
six-dimensional space- and velocity-encoding sequence
radio frequency and field gradient pulses@13# in the case of
~quasi-!two- or three-dimensional percolation clusters, r
spectively.

II. EXPERIMENTAL AND NUMERICAL METHODS

Figure 1 shows the radio frequency and field gradi
pulse scheme@13# used for the spin density and velocit
©2001 The American Physical Society14-1
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FIG. 1. Radio frequency and field gradient pulse sequence u
for the NMR velocity mapping experiments. A Hahn spin echo
generated by the ordinaryp/2-p RF pulse sequence. Thep pulse is
applied in the presence of aGz gradient in order to select th
sample volume of interest and to suppress signals from the w
supply hoses. The three spatial dimensions are probed by gra
pulsesGx ~frequency encoding!, andGy andGz ~phase encoding!.
The latter two gradients are independently incremented in a se
of successive transients. In order to acquire the velocity vector fi
in principle, three more dimensions must be scanned. The velo
components are phase encoded by the three unipolar and ‘‘ar
matched gradient pulse pairs flanking thep pulse. These gradien
pulses are again incremented in successive transients, indepen
of each other and of the spatial encoding pulses. The data se
quired in this way consists of four-~two-dimensional objects! or
six-dimensional~three-dimensional objects! matrices for the recip-
rocal spaces of the position and velocity vectors. Fourier transfo
in all of these dimensions lead to a conjugated data set allocati
velocity vector to each voxel.
04151
mapping NMR experiments. A 4.7-T Bruker magnet with
40-cm, horizontal room-temperature bore was employ
The radio frequency console was home made and contro
by a PC. The spatial resolution of the spin density or veloc
maps was better than 300mm in all spatial dimensions.

The percolation model objects were fabricated using
circuit board plotter~for details see Refs.@10–12#!. Figure 2
shows a typical two-dimensional random site percolat
cluster generated on a square lattice of 3003300 sites. The
occupation probability relative to the percolation threshold
p5pc10.028 ~wherepc50.5927 for the Euclidean dimen
sion dE52 @14#!. Based on the Monte-Carlo-generated te
plate~graph on the left!, a 12 cm312 cm model object was
fabricated with a mechanical resolution of 400mm ~photo-
graph in the middle!. Eight identical, 2-mm-thick layers with
a two-dimensional percolation network structure we
stacked in order to guarantee a good signal-to-noise rati
the experiments. The object was filled with water, and a s
density map was recorded with a digital resolution
300 mm ~picture on the right!. Visual inspection already

TABLE I. Comparison of the fractal dimensions of the po
spaces and their backbones evaluated from Monte Carlo and F
simulated percolation clusters and experimental data sets obta
with corresponding model objects. The data refer to averages fo
mean porosities considered. The error limits are rms deviation
the corresponding data sets.

Site percolation Swiss cheese Inverse swiss chee

df
MC 1.8660.02 1.6560.03 1.8160.03

df
exp 1.8360.03 1.6660.04 1.8360.03

df back
FEM 1.5060.03 1.2460.06 1.560.1

df back
exp 1.4660.03 1.4160.05 1.460.1
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FIG. 2. Typical two-dimensional random site percolation object generated on a square lattice of 3003300 sites. The sites are occupie
with a probabilityp5pc10.028, wherepc is the percolation threshold. The fractal dimension isdf51.87. ~a! Graph of the Monte Carlo
generated template.~b! Photograph of the 12 cm312 cm model object fabricated according to the Monte Carlo generated template
mechanical resolution is 400mm. ~c! Spin density map of the water-filled pore space. The digital resolution was 290mm (5123512).~A
color-coded version of this figure can be retrieved via www.uni-ulm.de/nmr/!
4-2
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FLOW THROUGH PERCOLATION CLUSTERS: NMR . . . PHYSICAL REVIEW E 63 041514
FIG. 3. Maps of the velocity magnitudev5Avx
21vy

2 and backbone of the two-dimensional random site percolation model object s
in Fig. 2. The pore space was filled with water and a pressure gradient was exerted. The velocity maps were acquired using the pu
shown in Fig. 1.~a! Velocity gray shade map as recorded. The ‘‘black’’ pixels of the corresponding black-and-white converted spin
map, that is, the pixels representing the matrix are screened off. The maximum velocity wasvm57.2 mm/s.~b! Velocity gray shade map
with all ‘‘static’’ pore space pixels~defined byv<vn) blackened. The rms velocity noise level wasvn50.6 mm/s.~c! Percolation backbone
after black-and-white conversion of the velocity map~b! (df51.50). ~A color-coded version of this figure can be retrieved via www.u
ulm.de/nmr/!
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ity
suggests that the fabrication process as well as the N
imaging procedure reproduce all structural details with gr
fidelity.

The spin density maps for the whole clusters and for
backbones~subscript ‘‘back’’! can be black-and-white con
verted as described in Ref.@10#. In Table I the structural
properties derived from the NMR experiments~subscript
‘‘exp’’ !, namely, the fractal dimensions of the percolati
clusters, are compared with Monte Carlo~subscript ‘‘MC’’!
and FEM simulation data. The black pixels are then cons
ered to represent the solid matrix. This matrix pixel set w
used as a mask to screen off the matrix in the velocity m
recorded with flowing water.

In the flow experiments, water was pumped through
objects using a pericyclic pump. The percolation backbo
which is the voxel subset of the pore space that contribute
transport across the sample@15#, was determined with the aid
of maps of the velocity magnitude for the~quasi-!two- or
three-dimensional cases,v5Avx

21vy
2 andv5Avx

21vy
21vz

2,
respectively. As a first step, all matrix voxels in the veloc
maps were blackened using the matrix masks deduced
the black-and-white converted spin density maps. In t
way, the contribution of noise from matrix voxels, who
phase distribution is falsely interpreted by the Fourier p
cessing analysis as a velocity distribution, was avoided.
cluding the matrix voxels from Fourier processing preve
any velocity artifacts of this sort.

In the second step, the~true! velocity noise level in the
pore space,vn , was determined as the root-mean-squ
~rms! velocity in stagnant water. The average noise level w
determined to be about 5% of the maximum velocityvmax.
This value compares well with that found in a test expe
ment with Hagen/Poiseuille flow in a pipe. The veloci
maps of the pore space were then treated in the follow
04151
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way. The pixel subset that has velocitiesv<vn was defined
as a ‘‘static’’ pixel subset. Blackening all such static po
space pixels yields the backbone of the percolation clu
deprived from all dead ends@11#. Figures 3~c! and 4~b! show
~quasi-!two- and three-dimensional examples, respectivel

FEM and FVM computer simulations of the velocity fie
in the pore space were carried out using the commercial s
ware packagesANSYS/FLOTRAN 5.5 and FLUENT 5.3, respec-
tively ~compare Ref.@16#!. In the case of large objects suc
as the 12 cm312 cm site percolation cluster displayed
Fig. 2, the FVM simulation variant was found to be superi
The convergence criterion was fixed to a residuum oe
51025. The matrix points were represented by 333
‘‘knots’’ or ‘‘elements.’’ Obstacles in the pore space are d
fined byv50 at the corresponding knots. In this way, pe
odic meshing was possible so that the same resolution
plies to all flow paths. In the simulations all pertine
parameters of the NMR experiments were anticipated, tha
the fluid viscosity, the pressure difference exerted to the
jects, and the object size. Figure 5 shows a comparison
experimental and simulated flow patterns in a random
percolation cluster.

III. RESULTS

In Fig. 6, a comparison of the three different percolati
models mentioned above is represented. The Monte C
generated templates, on the basis of which~quasi-!two-
dimensional model objects were fabricated, are shown in
first row ~a!. After filling the objects with water and exertin
a stationary pressure gradient, the flow patterns through
clusters were recorded using the pulse scheme shown in
1. Blackening the velocity noise contrasts of all pixels th
are known from the black-and-white converted spin dens
4-3
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ANDREAS KLEMM, RAINER KIMMICH, AND MARKUS WEBER PHYSICAL REVIEW E 63 041514
FIG. 4. Projections of three-dimensional spin density maps of an inverse swiss cheese model object filled with water. This objec
of one sample-spanning percolation cluster only. The data were recorded with the pulse scheme shown in Fig. 1. The obje
3.2 cm33.2 cm33.2 cm. The size of the cubic lattice on which the cluster was generated is 64364364 sites. The mean porosity of th
model object in which all isolated clusters were omitted isp50.087.~The mean porosity of the total network including all isolated clust
would be 0.273.! ~a! Complete percolation cluster as recorded in the form of a spin density map. The fractal dimension isdf52.29
~evaluated from the spin density map! or df52.292~determined from the Monte Carlo simulated template!. ~b! Percolation backbone derive
on the basis of a velocity map recorded in the same object. The magnitude of the velocityv5Avx

21vy
21vz

2 is represented in the rang
0.85 mm/s,v,16.65 mm/s, that is, between the velocity noise levelvn in the pore space on the one hand, and the maximum valuevm on
the other. The total flow rate was 59.3 mm3 s21. The fractal dimension of the backbone was evaluated asdf51.98.~A color-coded version
of this figure can be retrieved via www.uni-ulm.de/nmr/!
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maps to belong to the solid matrix, led to the velocity ma
shown in the third row~c!. The second row~b! shows FEM
simulations of these flow patterns. The fourth row~d! finally
represents the percolation backbones obtained by blacke
all pore space voxels in the velocity maps with velocit
below the noise level.

The spin density and velocity maps were evaluated us
the so-called sandbox method@10,11#. The quantities of in-
terest are the volume-averaged porosity and the volu
averaged velocity.Np probe circles~in the three-dimensiona
case, spheres! of varying radiusr are first placed randomly a
positions rk within the map in such a way that the prob
volumes are inside the sample and the center of the p
volume is in the pore space. Then the average values o
observables are formed for theNV voxels at positionsrj in-
04151
s

ing

g

e-

be
he

side the probe volume. Finally, the arithmetic mean of
data set for theNp probe volumes with a given radiusr is
taken. In other words, the volume-averaged porosity is
fined as

r̄V~r !5
1

Np
(
k51

Np 1

NV
(
j 51

NV

r~rj!, ~1!

wherer>urk2rju, and the density function

r~rj!5H 0 site rj not occupied

1 site rj occupied.
~2!
er

ia
FIG. 5. Comparison of a NMR velocity map
~a! and its FEM-simulated counterpart~b! of a
two-dimensional random site percolation clust
on a 1003100 square lattice (p50.64, p2pc

50.047, df51.88). The pixel resolutions are
2563256 and 3003300, respectively.~A color-
coded version of this figure can be retrieved v
www.uni-ulm.de/nmr/!
4-4
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FLOW THROUGH PERCOLATION CLUSTERS: NMR . . . PHYSICAL REVIEW E 63 041514
FIG. 6. Comparison of two-
dimensional percolation models
~i! ‘‘Site percolation,’’ p
50.641, p2pc50.0467; ~ii !
‘‘swiss cheese,’’ p50.482, p
2pc50.113; ~iii ! ‘‘inverse swiss
cheese,’’ p50.692, p2pc

50.112. Row ~a!, Monte Carlo
generated templates~pore space
rendered in white!. Row ~b!,
FEM-simulated velocity maps
Row ~c!, experimental velocity
maps recorded with the aid of th
pulse scheme in Fig. 1 in water
filled model objects to which a
pressure gradient is exerted. Th
maximum velocity magnitude is
depending on the individual ex
perimental parameter setup, of th
order of 10 mm/s. Row~d!, back-
bones derived from the experi
mental velocity maps. Matrix pix-
els are blackened based on blac
and-white converted spin densit
maps. ~A color-coded version of
this figure can be retrieved via
www.uni-ulm.de/nmr/!
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It can be evaluated from the black-and-white converted s
density maps@10#. The volume-averaged velocity has th
analogous form

v̄V~r !5
1

Np
(
k51

Np 1

NV
(
j 51

NV

v~rj!, ~3!

where againr>urk2rju. In this case, the evaluation direct
refers to maps of the velocity magnitude in two or thr
dimensions, v5Avx

21vy
2 and v5Avx

21vy
21vz

2, respec-
tively.

The volume-averaged porosity is characterized by th
characteristic parameters@see Fig. 7~a!#: the fractal dimen-
sion df , the percolation probabilityP` , and the correlation
04151
in

e

lengthj. The fractal dimension is defined in the scaling wi
dow where the volume-averaged porosity obeys a power
of the form

r̄V~r !}r df2dE, ~4!

wheredE is the Euclidean dimension. This law applies tor
,j. The correlation lengthj is defined as the mean distanc
of two occupied lattice points within the same finite clust
Above the correlation length, i.e., forr .j the volume-
averaged porosity takes a constant plateau value corresp
ing to the percolation probabilityP` . This quantity is de-
fined as the probability that a site belongs to the ‘‘infinite
cluster traversing the whole sample@17#.
4-5
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ANDREAS KLEMM, RAINER KIMMICH, AND MARKUS WEBER PHYSICAL REVIEW E 63 041514
FIG. 7. Volume-averaged porosity of~a! the total percolation clusters and~b! the corresponding backbones as a function of the pr
volume radius. The data have been evaluated from experimental spin density maps according to Eq.~1!, and refer to the three percolatio
models characterized in Fig. 6~‘‘Site percolation,’’ p50.641, p2pc50.0467; ‘‘swiss cheese,’’p50.482, p2pc50.113; ‘‘inverse
swiss cheese,’’p50.692, p2pc50.112). The solid lines represent the scaling behavior corresponding to Eq.~4!. Deviations from the
power law behavior at small probe volume radii are due to the fact that the pore dimensions vary in discrete steps so that starti
certain probe volume center in the pore space, the first matrix pixel enters the averaging process in full only in a distance of a fe
The fluctuations of the data points above the correlation length are caused by the finite object size. The average then is restric
reduced number of probe volumes that can be placed within the sample.
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Figure 7 shows plots of the volume-averaged porosity a
function of the probe volume radius. The evaluation w
carried out on the basis of Eq.~1! from experimental spin
density maps for the three percolation models. The cha
teristic parameters are given in the plots. The analysis of
Monte-Carlo-simulated templates@Fig. 2~a!# leads to equiva-

FIG. 8. Fractal dimensions of the total percolation clusters
their backbones as a function ofp2pc . The data refer to experi
mental NMR data and refer to the three percolation models cha
terized in Fig. 6@‘‘site percolation,’’ ‘‘swiss cheese,’’ and ‘‘inverse
swiss cheese’’~see Figs. 6 and 7#.
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lent results. This demonstrates that the experimental and
processing protocols lead to reliable results.

In Fig. 8, the fractal dimensions evaluated from the pow
law section of the volume-averaged porosity according
Eq. ~4! is plotted as a function of the occupation probabil
for all three percolation models and their backbones are
rived from experimental NMR data. It appears that the re
tion between the fractal dimensions of the backbone,df back

exp ,
and of the total percolation cluster,df

exp, averaged over all
three models and all mean porosities investigated,

^df back
exp &5^df

exp&2~0.360.1!, ~5!

is valid. The error limits represent the rms deviation in t
data set considered. The average fractal dimension of all
perimentally determined backbones was found to
^df back

exp &51.46.
This value may be compared with Monte Carlo bas

simulation data for a site percolation cluster reported in
literature, see Refs.@18,19#. In these studies, the backbon
was defined as the ensemble of all voxels that are conne
with the surface by at least two pathways. Based on
definition, a value ofdf back51.64 was evaluated@19#. On
the other hand, the ‘‘skeleton’’ was defined consisting of t
set of all shortest pathways to the surface@18#. The corre-
sponding fractal dimension was reported to bedf

sk51.10.
Note that in real flow, the preferential transport pathways

d

c-
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FLOW THROUGH PERCOLATION CLUSTERS: NMR . . . PHYSICAL REVIEW E 63 041514
FIG. 9. Volume-averaged velocity as a function of the probe volume radius. The data have been evaluated from the experim
FEM-simulated velocity maps~see Fig. 6! according to Eq.~3!. ~a! ‘‘Site percolation,’’ p50.641, p2pc50.0467;~b! ‘‘swiss cheese,’’
p50.482, p2pc50.113;~c! ‘‘inverse swiss cheese,’’p50.692, p2pc50.112.
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those where flow resistance is lowest. This is in contrast w
the skeleton definitions used in the computer simulati
mentioned above. Keeping in mind that our experiments
fer to real flow through the percolation clusters, we conclu
that the two fractal-dimension values define the upper
lower limits of the range in which real experimental valu
can be expected. As a matter of fact, the average v
^df back

exp &51.46 determined in the present study lies w
within the range predicted by computer simulations of
skeleton and the backbone.

In Table I our experimental fractal-dimension data a
compared with those derived from our FEM simulations
ing the same velocity-related criterion as in the evaluation
the experimental data. The fractal dimension of the total p
space is perfectly reproduced in the simulations for all th
models. The fractal dimension of the backbone turns ou
be reduced again. Taking the average over all three mo
and all mean porosities leads to the empirical relation

^df back
FEM &5^df

FEM&2~0.460.1! ~6!

with error limits defined as before. The average fractal
mension of the simulated backbones of all three models
for all mean porosities iŝdf back

FEM &51.41.
The volume-averaged velocity~on the backbone! was

evaluated from the experimental@Fig. 6~c!# and FEM simu-
lation @Fig. 6~b!# data according to Eq.~3! as a function of
the probe volume radius. In analogy with the analysis of
NMR data, the backbone of the simulated percolation cl
ters was defined by blackening all voxels with velocitiesv
<vco , where the cutoff valuevco corresponds to the rm
noise valuevn in the experiments. The actual value ofvco
was adapted to the experimental situation us
(vco /vmax)FEM5(vn /vmax)exp. The volume-averaged ve
locity data determined in this way are plotted in Fig. 9.
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turned out that the power law

v̄V~r !}r 2l, ~7!

is valid for a wide range. The exponentl is more or less
insensitive to the type of the percolation cluster as well as
occupation probability~see Fig. 10!. This suggests a univer
sal character of the power law, Eq.~7!, and of the value
range of the exponents.

IV. DISCUSSION

Flow through random site percolation, swiss cheese,
inverse swiss cheese clusters has been studied by NMR
locity mapping experiments as well as by FEM/FVM sim

FIG. 10. Exponentl of the scaling law for the volume-average
velocity as a function of the occupation probability of the thr
percolation models.
4-7
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ANDREAS KLEMM, RAINER KIMMICH, AND MARKUS WEBER PHYSICAL REVIEW E 63 041514
lations. Monte Carlo generated clusters were used as
plates for the fabrication of~quasi-!two- and three-
dimensional model objects. The pore space of the sam
spanning cluster was filled with water and rendered in
form of spin density maps. An external pressure gradient
exerted and velocity maps were recorded within the clust
On this basis, the percolation backbones were evaluated

The perfect coincidence of the experimental spin den
and velocity maps with the Monte Carlo generated templa
and FEM/FVM-simulated flow patterns, respectively, pro
that the fabrication process, the measuring technique, and
evaluation procedure can be considered to be reliable pr
dures. One of the conclusions is that parameters such a
fractal dimension, the correlation length, and the percola
probability both of the total clusters and the percolati
backbones can safely be determined with computer sim
tion techniques. The same applies to the volume-avera
velocity that was found to scale with the probe volume
dius for a wide range in the form of a power law. The exp
nent of this law depends only weakly on the porosity and
type of the percolation models considered in this study
-

ls
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i-
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theoretical linkage to the fractal dimension evaluated fr
the volume-averaged porosity appears to be plausible,
has not yet been established.

While the present study solely refers to the three simp
percolation models, natural systems such as sponge, pum
sand beds, etc. have been examined in our previous w
@12#. The comparison suggests that the pore spaces in
models considered here are too weakly cross linked to
able to represent natural systems. This, in particular, rev
itself by the big difference in the fractal dimensions of t
total cluster and the backbones. The natural samples con
ered so far tend to coinciding values for both fractal dime
sions. The conclusion is that correlated~or Ising! site perco-
lation models @20,21# should be more adequate for re
porous materials. A corresponding study is in preparation
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