PHYSICAL REVIEW E, VOLUME 63, 041514
Flow through percolation clusters: NMR velocity mapping and numerical simulation study
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Three- andquasijtwo-dimensional percolation objects have been fabricated based on Monte Carlo gener-
ated templates. The object size was up to 12(860 lattice sitesin each dimension. Random site, semicon-
tinuous swiss-cheese, and semicontinuous inverse swiss-cheese percolation models above the percolation
threshold were considered. The water-filled pore space was investigated by nuclear magnetic résidfance
imaging and, after exerting a pressure gradient, by NMR velocity mapping. The spatial resolutions of the
fabrication process and the NMR experiments were 40@ and better than 30Qwm, respectively. The
experimental velocity resolution was 6@m/s. The fractal dimension, the correlation length, and the perco-
lation probability can be evaluated both from the computer generated templates and the corresponding NMR
spin density maps. Based on velocity maps, the percolation backbones were determined. The fractal dimension
of the backbones turned out to be smaller than that of the complete cluster. As a further relation of interest, the
volume-averaged velocity was calculated as a function of the probe volume radius. In a certain scaling
window, the resulting dependence can be represented by a power law, the exponent of which was not yet
considered in the theoretical literature. The experimental results favorably compare to computer simulations
based on the finite-element meth@EM) or the finite-volume methodVM). This demonstrates that NMR
microimaging as well as FEM/FVM simulations reliably reflect transport features in percolation clusters.
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[. INTRODUCTION obstacle or void positions coincide with grid points of a cer-
tain discrete square or cubic base lattieeg., of size 64
The objective of this study is to explore laws governing X 64X 64 in one of the systems to be considered hdrethe
flow in two- and three-dimensional objects modeling porouspresent case, the respective radius of the obstacles and voids
media. The description by characteristic parameters is of pawas chosen to be& wherea is the base lattice constant
ticular interest as demonstrated by the numerous papers [42]. That is, the obstacles or voids are allowed to “continu-
literature dealing with such problensee, for instance, Refs. ously” overlap each other. Note however, that the actual
[1-5]). The present investigations refer to Monte Carlo gen-‘circular” or “spherical” shape of the obstacles and voids
erated percolation clusters as well as to real model objectéan only be approximated by a point-symmetric distribution
that have been fabricated on the basis of the Monte Carlef discrete pixels or voxels, of course.
generated templates. Numerical simulations based on the In order to put the results concerning flow through the
finite-element methodFEM) or the finite-volume method percolation cluster on a reliable and mutually consistent ba-
(FVM) on the one hand are compared with experimental resis, we have studied clusters characterized by the same pa-
sults of nuclear magnetic resonan¢dMR) microscopy rameters both in real NMR microscopy experiments and in
techniques on the other. FEM/FVM simulations. That is, clustergin the three-
Three different, well-defined percolation mod¢s6,7] dimensional case chosen without any unsuspended “is-
have been considere@) Random site percolatiorSites on  lands” that cannot be realized in the model objects to be
a square or cubic lattice are occupied with a probabgity ~ fabricated were first defined using a random number genera-
the vicinity of the percolation threshold that is characterizedor. These data sets were then used as matrix patterns for the
by the critical occupation probability,. . Neighboring occu- FEM/FVM simulations and as templates for the fabrication
pied sites are connected by pores with a cross section corréf real model objects. The real model objects were then filled
sponding to the lattice constaator integer multiples of it. ~ With water pressed through the percolation cluster. Clearly,
The total subsets of connected lattice sites are called cluster@nly the “infinite” cluster can be reached in this way,
For p>p., sample-spanning clusters occur that can be exwhereas any isolated “finite” clusters remain inaccessible to
amined with respect to transport properties. Adieal. sug- NMR experiments. Spin density and velocity maps of the
gested the use of this model to describe Fontainebleau san#@ater in the pores were recorded with the aid of four- or
stone[9]. (b) “Swiss cheese” percolatiohi8]: Circular or  Six-dimensional space- and velocity-encoding sequences of
spherical obstacles of a certain radius are randomly distribcadio frequency and field gradient puldés3] in the case of
uted in a semicontinuous transport medium irrespective ofquasijtwo- or three-dimensional percolation clusters, re-
any overlap. The pore space is then formed by the interstitiggPectively.
space.(c) “Inverse swiss-cheese” percolatiorCircular or
spherical voids are placed at random in a semicontinuous
matrix irrespective of any overlap. The pore space consists of
the entity of the(partially overlapping voids. Figure 1 shows the radio frequency and field gradient
In the latter two cases, “semicontinuous” means that thepulse schemg13] used for the spin density and velocity

Il. EXPERIMENTAL AND NUMERICAL METHODS
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(1/2), m)y, echo TABLE |. Comparison of the fractal dimensions of the pore
spaces and their backbones evaluated from Monte Carlo and FEM-
RF [ /\ simulated percolation clusters and experimental data sets obtained
with corresponding model objects. The data refer to averages for all
mean porosities considered. The error limits are rms deviations in

v

[T ]

G, I | > the corresponding data sets.
% Site percolation  Swiss cheese Inverse swiss cheese
G >
Y ES dpe 1.86+0.02 1.65-0.03 1.81-0.03
dgP 1.83+0.03 1.66-0.04 1.83-0.03
G, % [ > dfEM, 1.50+0.03 1.24-0.06 1.5-0.1
E=S I 1.46+0.03 1.41-0.05 1.4-0.1

G ESRN=E .

X,¥,2 -
% % time mapping NMR experiments. A 4.7-T Bruker magnet with a

FIG. 1. Radio frequency and field gradient pulse sequence used0-Ccm, horizontal room-temperature bore was employed.
for the NMR velocity mapping experiments. A Hahn spin echo is The radio frequency console was home made and controlled
generated by the ordinary/2-7 RF pulse sequence. Thepulse is by a PC. The spatial resolution of the spin density or velocity
applied in the presence of @, gradient in order to select the maps was better than 30@m in all spatial dimensions.
sample volume of interest and to suppress signals from the water The percolation model objects were fabricated using a
supply hoses. The three spatial dimensions are probed by gradieoircuit board plotterfor details see Ref$10—-12). Figure 2
pulsesG, (frequency encodingandG, andG, (phase encoding  shows a typical two-dimensional random site percolation
The latter two gradients are independently incremented in a seriggyster generated on a square lattice of 8300 sites. The
of successive transients. In order to acquire the velocity vector fie'%ccupation probability relative to the percolation threshold is

in principle, three more dimensions must be scanned. The velocity, — pc+0.028 (Wwhere p,=0.5927 for the Euclidean dimen-
components are phase encoded by the three unipolar and “area'sjon de=2 [14]). Based on the Monte-Carlo-generated tem-
matched gradient pulse pairs flanking thepulse. These gradient

| o ed i ive transients. ind q late (graph on the left a 12 cmx 12 cm model object was
pulses are again incremented in successive transients, independe ricated with a mechanical resolution of 4Qgm (photo-
of each other and of the spatial encoding pulses. The data set ac- . . . . . . .

RS i . : . graph in the middle Eight identical, 2-mm-thick layers with
quired in this way consists of fourtwo-dimensional objecisor tWo-di . | lati twork  struct
six-dimensionalthree-dimensional objedtsnatrices for the recip- a ko(-j .|mendS|ona percolation ned Qr IS ruc u_re Wgrg
rocal spaces of the position and velocity vectors. Fourier transformasaC e m order to guar«_’:mtee a gpo S|gna -to-noise ratlo_ln
in all of these dimensions lead to a conjugated data set allocating e e_Xpe”ments' The object Was filled W!th water, a”‘? aspin
velocity vector to each voxel. density map was recorded with a digital resolution of

300 um (picture on the right Visual inspection already

(a) (b) ©

FIG. 2. Typical two-dimensional random site percolation object generated on a square latticex@0BO0Sites. The sites are occupied
with a probabilityp=p.+0.028, wherep, is the percolation threshold. The fractal dimensionlis-1.87.(a) Graph of the Monte Carlo
generated templatéb) Photograph of the 12 cm12 cm model object fabricated according to the Monte Carlo generated template. The
mechanical resolution is 40@m. (c) Spin density map of the water-filled pore space. The digital resolution was280(512x512).(A
color-coded version of this figure can be retrieved via www.uni-ulm.dejnmr/
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(a) (b) (c)

FIG. 3. Maps of the velocity magnitude= \/vx2+vy2 and backbone of the two-dimensional random site percolation model object shown
in Fig. 2. The pore space was filled with water and a pressure gradient was exerted. The velocity maps were acquired using the pulse scheme
shown in Fig. 1(a) Velocity gray shade map as recorded. The “black” pixels of the corresponding black-and-white converted spin density
map, that is, the pixels representing the matrix are screened off. The maximum velocity,was2 mm/s.(b) Velocity gray shade map
with all “static” pore space pixelgdefined byv <v,,) blackened. The rms velocity noise level was=0.6 mm/s.(c) Percolation backbone
after black-and-white conversion of the velocity m@p (d¢=1.50). (A color-coded version of this figure can be retrieved via www.uni-
ulm.de/nmr)

suggests that the fabrication process as well as the NMRay. The pixel subset that has velocities v,, was defined
imaging procedure reproduce all structural details with greaas a “static” pixel subset. Blackening all such static pore
fidelity. space pixels yields the backbone of the percolation cluster

The spin density maps for the whole clusters and for thaleprived from all dead end41]. Figures 8c) and 4b) show
backbonegsubscript “back”) can be black-and-white con- (quasijtwo- and three-dimensional examples, respectively.
verted as described in Rdf10]. In Table | the structural FEM and FVM computer simulations of the velocity field
properties derived from the NMR experimentsubscript in the pore space were carried out using the commercial soft-
“exp” ), namely, the fractal dimensions of the percolationware packageaNsSYS/FLOTRAN 5.5and FLUENT 5.3 respec-
clusters, are compared with Monte Caftkubscript “MC”)  tively (compare Ref[16]). In the case of large objects such
and FEM simulation data. The black pixels are then considas the 12 cix 12 cm site percolation cluster displayed in
ered to represent the solid matrix. This matrix pixel set was=ig. 2, the FVM simulation variant was found to be superior.
used as a mask to screen off the matrix in the velocity map¥he convergence criterion was fixed to a residuumeof
recorded with flowing water. =105 The matrix points were represented byx 3

In the flow experiments, water was pumped through the‘knots” or “elements.” Obstacles in the pore space are de-
objects using a pericyclic pump. The percolation backbonefined byv =0 at the corresponding knots. In this way, peri-
which is the voxel subset of the pore space that contributes todic meshing was possible so that the same resolution ap-
transport across the samplis], was determined with the aid plies to all flow paths. In the simulations all pertinent
of maps of the velocity magnitude for tHguasijtwo- or  parameters of the NMR experiments were anticipated, that is,
three-dimensional cases—= \/UX2+Uy2 andv = \/vxz-l-vyz-i- vZ,  the fluid viscosity, the pressure difference exerted to the ob-
respectively. As a first step, all matrix voxels in the velocity jects, and the object size. Figure 5 shows a comparison of
maps were blackened using the matrix masks deduced froexperimental and simulated flow patterns in a random site
the black-and-white converted spin density maps. In thigercolation cluster.
way, the contribution of noise from matrix voxels, whose
phase distribution is falsely interpreted by the Fourier pro- . RESULTS
cessing analysis as a velocity distribution, was avoided. Ex-
cluding the matrix voxels from Fourier processing prevents In Fig. 6, a comparison of the three different percolation
any velocity artifacts of this sort. models mentioned above is represented. The Monte Carlo

In the second step, th@rue) velocity noise level in the generated templates, on the basis of whicjuasijtwo-
pore spaceyp,, was determined as the root-mean-squaredimensional model objects were fabricated, are shown in the
(rms) velocity in stagnant water. The average noise level wadirst row (a). After filling the objects with water and exerting
determined to be about 5% of the maximum velocity,,. & stationary pressure gradient, the flow patterns through the
This value compares well with that found in a test experi-clusters were recorded using the pulse scheme shown in Fig.
ment with Hagen/Poiseuille flow in a pipe. The velocity 1. Blackening the velocity noise contrasts of all pixels that
maps of the pore space were then treated in the followingire known from the black-and-white converted spin density
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(@) (b)

FIG. 4. Projections of three-dimensional spin density maps of an inverse swiss cheese model object filled with water. This object consists
of one sample-spanning percolation cluster only. The data were recorded with the pulse scheme shown in Fig. 1. The object size is
3.2 cmx 3.2 cmx 3.2 cm. The size of the cubic lattice on which the cluster was generatedi6%464 sites. The mean porosity of the
model object in which all isolated clusters were omitteg#s0.087.(The mean porosity of the total network including all isolated clusters
would be 0.273. (a) Complete percolation cluster as recorded in the form of a spin density map. The fractal dimendjen2i29
(evaluated from the spin density map d;=2.292(determined from the Monte Carlo simulated templatie) Percolation backbone derived
on the basis of a velocity map recorded in the same object. The magnitude of the vel@a;@z' X+u§+vz2 is represented in the range
0.85 mm/s<v<16.65 mm/s, that is, between the velocity noise leygin the pore space on the one hand, and the maximum vl
the other. The total flow rate was 59.3 s~ . The fractal dimension of the backbone was evaluatedi &d.98.(A color-coded version
of this figure can be retrieved via www.uni-ulm.de/nmr/

maps to belong to the solid matrix, led to the velocity mapsside the probe volume. Finally, the arithmetic mean of the
shown in the third row(c). The second rowb) shows FEM  data set for theN,, probe volumes with a given radiusis
simulations of these flow patterns. The fourth r@ finally ~ taken. In other words, the volume-averaged porosity is de-
represents the percolation backbones obtained by blackenirined as

all pore space voxels in the velocity maps with velocities

below the noise level.

The spin density and velocity maps were evaluated using — '
the so-called sandbox meth§ti0,11]. The quantities of in- pv(r)=N—p gl Ny & p(ry), @
terest are the volume-averaged porosity and the volume-
averaged velocityN, probe circlegin the three-dimensional
case, sphergsf varying radius are first placed randomly at Wherer =|r,—r;|, and the density function
positionsr, within the map in such a way that the probe
volumes are inside the sample and the center of the probe . .
volume is in the pore space. Then the average values of the p(r)= 0 site r; notoccupied )
observables are formed for tiNg, voxels at positions; in- ! 1 siter; occupied.

N Ny

5 mm

FIG. 5. Comparison of a NMR velocity map
(@) and its FEM-simulated counterpaith) of a
two-dimensional random site percolation cluster
on a 100< 100 square latticep=0.64, p—p.
=0.047, d;=1.88). The pixel resolutions are
256X 256 and 30& 300, respectively(A color-
coded version of this figure can be retrieved via
www.uni-ulm.de/nmpy

Water flow direction

(256x256) 0 m—
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site percolation swiss cheese inverse swiss cheese
0.0467)  (p=0.482; p-p.=0.113)
‘:.I. TR, .

FIG. 6. Comparison of two-
dimensional percolation models.
(i) “Site percolation,” p
=0.641, p—p.=0.0467; (i)
“swiss cheese,” p=0.482, p
—p:.=0.113; (iii) “inverse swiss
cheese,” p=0.692, p—p.
=0.112. Row (a), Monte Carlo
generated templatefore space
rendered in white Row (b),
FEM-simulated velocity maps.
Row (c), experimental velocity
maps recorded with the aid of the
pulse scheme in Fig. 1 in water-
filed model objects to which a
pressure gradient is exerted. The
maximum velocity magnitude is,
depending on the individual ex-
perimental parameter setup, of the
order of 10 mm/s. Rowd), back-
bones derived from the experi-
mental velocity maps. Matrix pix-
els are blackened based on black-
and-white converted spin density
maps. (A color-coded version of
this figure can be retrieved via
www.uni-ulm.de/nmpy
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It can be evaluated from the black-and-white converted spifengthé. The fractal dimension is defined in the scaling win-
density mapg10]. The volume-averaged velocity has the dow where the volume-averaged porosity obeys a power law

analogous form of the form
N N _
— 1 &1 g di—d
vy(r)=o- E — E v(r), (3) py(r)eer e, (4)
Np &1 Ny =1

wheredg is the Euclidean dimension. This law appliesrto

where agairr =|r,—rj|. In this case, the evaluation directly <¢. The correlation lengtl is defined as the mean distance
refers to maps of the velocity magnitude in two or threeof two occupied lattice points within the same finite cluster.
dimenSiOﬂS,U:\/UX2+Uy2 and v=\/vxz+vy2+vzz, respec- Above the correlation length, i.e., far>¢ the volume-
tively. averaged porosity takes a constant plateau value correspond-

The volume-averaged porosity is characterized by threéng to the percolation probability?,.. This quantity is de-
characteristic parametefsee Fig. 7a)]: the fractal dimen- fined as the probability that a site belongs to the “infinite”
siond;, the percolation probability.,, and the correlation cluster traversing the whole samptE7].
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FIG. 7. Volume-averaged porosity ¢) the total percolation clusters aril) the corresponding backbones as a function of the probe
volume radius. The data have been evaluated from experimental spin density maps accordind.oalfd.refer to the three percolation
models characterized in Fig. GSite percolation,” p=0.641, p—p.=0.0467; “swiss cheese,’»=0.482, p—p.=0.113; “inverse
swiss cheese,’p=0.692, p—p.=0.112). The solid lines represent the scaling behavior corresponding t@)Edpeviations from the
power law behavior at small probe volume radii are due to the fact that the pore dimensions vary in discrete steps so that starting from a
certain probe volume center in the pore space, the first matrix pixel enters the averaging process in full only in a distance of a few pixels.
The fluctuations of the data points above the correlation length are caused by the finite object size. The average then is restricted by the
reduced number of probe volumes that can be placed within the sample.

Figure 7 shows plots of the volume-averaged porosity as &nt results. This demonstrates that the experimental and data
function of the probe volume radius. The evaluation wasprocessing protocols lead to reliable results.
carried out on the basis of E@l) from experimental spin In Fig. 8, the fractal dimensions evaluated from the power
density maps for the three percolation models. The charadaw section of the volume-averaged porosity according to
teristic parameters are given in the plots. The analysis of th&q. (4) is plotted as a function of the occupation probability
Monte-Carlo-simulated templatéBig. 2(@)] leads to equiva- for all three percolation models and their backbones are de-
rived from experimental NMR data. It appears that the rela-

2.00 — T T T 1 tion between the fractal dimensions of the backbalfg?.,,
and of the total percolation clustedf*?, averaged over all
W three models and all mean porosities investigated,
o 1.751 .
C
8 (dfio0=(dF P - (0.3+0.), )
® 150 A ! o . ) ) . o
£ a L is valid. The error limits represent the rms deviation in the
o 4 © data set considered. The average fractal dimension of all ex-
1 g
g 1.25 4 | perimentally determined backbones was found to be
® (dfpb.0=1.46.
- Site percolation Swiss cheese Inverse swiss cheese - .
A percolation cluster @ percolation cluster ® percolation cluster This value may be Compared with Monte Carlo based
A backbone o backbone o backbone . . . . .
1.00 - simulation data for a site percolation cluster reported in the
0.000 0.025 0.050 0.075 0.100 0.125 literature, see Refd18,19. In these studies, the backbone
- was defined as the ensemble of all voxels that are connected
P-P
c

with the surface by at least two pathways. Based on this

FIG. 8. Fractal dimensions of the total percolation clusters andi€finition, a value ofdip,c=1.64 was evaluatefl9]. On
their backbones as a function pf-p.. The data refer to experi- the other hand, the “skeleton” was defined consisting of the
mental NMR data and refer to the three percolation models charag€t Of all shortest pathways to the surfdd&]. The corre-
terized in Fig. “site percolation,” “swiss cheese,” and “inverse sponding fractal dimension was reported to #¥=1.10.
swiss cheese'(see Figs. 6 and]7 Note that in real flow, the preferential transport pathways are
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FIG. 9. Volume-averaged velocity as a function of the probe volume radius. The data have been evaluated from the experimental and
FEM-simulated velocity mapé&see Fig. § according to Eq(3). (a) “Site percolation,” p=0.641, p—p.=0.0467;(b) “swiss cheese,”
p=0.482, p—p.=0.113;(c) “inverse swiss cheese,p=0.692, p—p.=0.112.

those where flow resistance is lowest. This is in contrast withurned out that the power law
the skeleton definitions used in the computer simulations
mentioned above. Keeping in mind that our experiments re- U_V(r)ocrﬂ, (7)
fer to real flow through the percolation clusters, we conclude
that the two fractal-dimension values define the upper anés valid for a wide range. The exponentis more or less
lower limits of the range in which real experimental valuesinsensitive to the type of the percolation cluster as well as the
can be expected. As a matter of fact, the average valueccupation probabilitysee Fig. 1D This suggests a univer-
(dfpP.0=1.46 determined in the present study lies wellsal character of the power law, E(7), and of the value
within the range predicted by computer simulations of therange of the exponents.
skeleton and the backbone.

In Table | our experimental fractal-dimension data are IV. DISCUSSION
compared with those derived from our FEM simulations us-
ing the same velocity-related criterion as in the evaluation of Flow through random site percolation, swiss cheese, and
the experimental data. The fractal dimension of the total poréverse swiss cheese clusters has been studied by NMR ve-
space is perfectly reproduced in the simulations for all thredocity mapping experiments as well as by FEM/FVM simu-
models. The fractal dimension of the backbone turns out to

be reduced again. Taking the average over all three model 1% — T T T T T T
and all mean porosities leads to the empirical relation o
FEM \ _ FEM
<dfback>7<df >_(O4i01) (6) 0.75 a ° Z. ° © ° 7]
[ ] o o l. o 2
with error limits defined as before. The average fractal di- s was "
mension of the simulated backbones of all three models an¢, - oso- 2" SN | ° . 4
for all mean porosities iédfFn)=1.41. g
The volume-averaged velocitjon the backbonewas ]
evaluated from the experiment{dig. 6(c)] and FEM simu- 0254 NMR experiment: FEM simulation: 4
lation [Fig. 6(b)] data according to Eq3) as a function of A Site percolation A Site percolation
the probe volume radius. In analogy with the analysis of the 1 9 ISW'SS cheese O Swiss cheese
- 3 nverse swiss cheese O |Inverse swiss cheese
NMR data, the backbone of the simulated percolation clus- . . _ ' _ .
ters was defined by blackening all voxels with velocities 0.00 0.02 0.04 0.06 0.08 0.10 0.12
<v.,, Where the cutoff value ., corresponds to the rms p-p
[

noise valuev,, in the experiments. The actual value wf,

was adapted to the experimental situation using FIG. 10. Exponenk of the scaling law for the volume-averaged
(veo/vmadreEmM= (Un/Umadexp- The volume-averaged ve- velocity as a function of the occupation probability of the three
locity data determined in this way are plotted in Fig. 9. It percolation models.
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lations. Monte Carlo generated clusters were used as tentheoretical linkage to the fractal dimension evaluated from
plates for the fabrication of(quasijtwo- and three- the volume-averaged porosity appears to be plausible, but
dimensional model objects. The pore space of the sampléias not yet been established.
spanning cluster was filled with water and rendered in the While the present study solely refers to the three simplest
form of spin density maps. An external pressure gradient wagercolation models, natural systems such as sponge, pumice,
exerted and velocity maps were recorded within the clusterssand beds, etc. have been examined in our previous work
On this basis, the percolation backbones were evaluated. [12]. The comparison suggests that the pore spaces in the
The perfect coincidence of the experimental spin densitynodels considered here are too weakly cross linked to be
and velocity maps with the Monte Carlo generated templategple to represent natural systems. This, in particular, reveals
and FEM/FVM-simulated flow patterns, respectively, proveitself by the big difference in the fractal dimensions of the
that the fabrication process, the measuring technique, and thgta| cluster and the backbones. The natural samples consid-
evaluation procedure can be considered to be reliable procgred so far tend to coinciding values for both fractal dimen-
dures. One of the conclusions is that parameters such as te@yns. The conclusion is that correlatext Ising site perco-
fractal dimension, the correlation length, and the percolationgtion models[20,21] should be more adequate for real

probability both of the total clusters and the percolationporous materials. A corresponding study is in preparation.
backbones can safely be determined with computer simula-

tion techniques. The same applies to the volume-averaged
velocity that was found to scale with the probe volume ra-
dius for a wide range in the form of a power law. The expo-
nent of this law depends only weakly on the porosity and the This work was supported by the Deutsche Forschungsge-
type of the percolation models considered in this study. Ameinschatft.
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